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The polaron at large total momentum 

Herbert Spohn 
Universitat Miinchen, Theoretische Physik, Theresienstrasse 37, D-8000 Miinchen, Federal 
Republic of Germany 

Received 9 July 1987 

Abstract. We prove that for dimensions d = 1,2  the polaron (with general dispersion 
relation and couplings) has a unique ground state for any value of the total momentum 
(particle+Bose field). For d 2 3  and for sufficiently small total momentum we show the 
existence of a unique ground state, extending however the domain of uniqueness known 
previously. 

1. Introduction 

The polaron is an electron coupled to a polar crystal. Following Frohlich [ l ]  the 
Hamiltonian is 

ddk w (  k ) a ’ ( k ) a ( k ) + &  ddk A (  k)(eik“ a ( k )  +e-’& ~ ‘ ( k ) ) .  (1.1) 
2m 5 

Here m is the mass of the electron, x , p  its position and momentum respectively. 
{a’( k), a( k) I k E R d }  is a Bose field representing the quantised longitudinal optical 
mode. As an approximation the dispersion relation is constant 

w ( k )  = hwo (1.2) 

& A ( k )  = &hw,( h/2mwo)”4(4~)”2(2~)-3’2(l/[k~). (1.3) 

and the couplings are 

Here a is the dimensionless coupling constant. As usual, we adopt units such that 
h = l = m .  

For most of our results we do not need such specific choices. Therefore we let 
w (  k )  be arbitrary, only subject to the constraints 

w ( k )  3 W O >  0 (1.4) 

w ( k , )  + U (  k2) - ~ ( k ,  + k2) 3 0. (1.5) 
The couplings are assumed to be real with 

1 ddk A ( k ) ’ (  1 + IC*)-’ < 03. 

We also impose reflection symmetry, w (k) = w (- k ) ,  A ( k )  = A (-k). It is of interest to 
understand the dimension dependence. Therefore we let d be arbitrary (d  = 1,2,3,  
physically). 

0305-4470/88/051199 + 13$02.50 @ 1988 IOP Publishing Ltd 1199 
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The Hamiltonian H commutes with the total momentum 

ddk ka'( k ) a (  k ) .  P = p + I (1.7) 

By (1.7) we eliminate p from (1.1) and perform the canonical transformation 
a ( k ) +  -e-ikx a ( k ) .  Then the Hamiltonian for fixed total momentum q, where q is a 
c number, is given by 

ddkka+(k)a(k))2 

+ ddk w ( k ) a ' ( k ) a ( k )  -& ddk A (  k ) ( a + ( k )  + a ( k ) ) .  I J 
By the further canonical transformation a ( k ) +  - a ( k )  if A ( k ) < O  we can always 
find that 

A ( k ) Z O .  (1.9) 

H ( q )  is an operator on the standard boson Fock space, 9. By our assumptions on A 
and U ,  H ( q )  is self-adjoint and bounded from below for all q. 

Frohlich [2] (cf also [3]) proves that if 

(1.10) 

then H ( q )  has a unique ground state which is separated by a finite gap from the 
continuum. The ground-state energy, E (  q ) ,  is analytic in q and in the coupling strength 
a. (Note that the condition (1.10) does not depend on a.) Physically the ground state 
represents a dressed electron moving frictionless at constant momentum q through the 
polar crystal. The result quoted leaves open the question as to what happens for large 

For states right at the continuum edge the polaron has momentum q = 0 and in 
addition there is one free phonon with momentum q. (Here w ( k )  = w o ,  cf § 5 for the 
general case.) For small 141 such a state is energetically unfavourable and a ground 
state with total momentum q is preferred. The polaron at q = 0 binds the extra phonon 
with momentum q. The problem posed is whether there is still binding at large 141. 

In his book on statistical mechanics [4], Feynman argues that for small coupling 
there is no binding provided 141 > a. His result is based on the observation that 
the expansion of the ground-state energy in a breaks down at q = a. (Note that 
the unperturbed Hamiltonian, a = 0, has a bound state in the continuum if 191 > Go.) 
Warmenbol er a1 [SI have investigated the experimental observability of E ( q ) ,  in 
particular the deviation from the quadratic behaviour q2/2m*, where m* is the effective 
mass. They also reviewed the various approximate methods developed for the determi- 
nation of E ( q ) .  There seems to be agreement that in the physical dimension d = 3 
there is no binding for 141 sufficiently large. This is further supported by the recent 
results of Gerlach [ 6 ] .  

We will prove that for dimensions d = 1 and 2 the polaron has a unique ground 
state separated by a finite gap from the continuum at any q. This result is general in 
A but requires some further regularity assumptions on w, cf § 5. For d 2 3 we extend 
the domain of uniqueness beyond (1.10). The unbinding of a phonon with momentum 
q is a possibility provided ) q (  is sufficiently large. 

141. 



The polaron at large total momentum 1201 

At first sight the situation resembles the one for Schrodinger operators. For d = 1 , 2  
an attractive potential always binds, whereas for d 2 3 the potential has to be sufficiently 
attractive [7]. Although suggestive we cannot substantiate this analogy on a technical 
level. 

2. A jump process perturbed by a potential 

Our starting point is that 

dkw(k)a'(k)a(k) - dk & A (  k)(a'(k)+ a (k ) )  (2.1) I 
is the generator of a simple jump process and that 

V = -  9 -  dkka ' (k)a(k)  
2 Y I 

serves as a potential. We assume I dkh(k )2<co  (2.3) 

and deal with the more singular interaction (1.6) by a limiting argument. (We set 
ddk = dk.) The coupling strength & will be fixed throughout and is absorbed into A. 
At the very end we could have avoided the use of stochastic processes but they provide 
such a direct intuition that the effort is worthwhile. In the appendix we describe 
another approach using the standard polaron functional integral at purely imaginary 
external 'magnetic' field q. Unfortunately this method does not seem to be technically 
very powerful. The use of a jump process has been advocated before [ 81 for a polaron 
in [9]. The latter author missed regarding i ( q  -{  dk ka'(k)a( k))' as a potential. 

The ground state of Ho is the coherent state l = (lo, tl ,  . . . ) with 

The ground-state energy is 

Eo=- dk(A'/w)(k). I 
The standard transformation 

Lo = -l-y Ho - Eo)[  

defines the backward generator of a Markov jump process. The jump process is denoted 
by X , .  The state space of this process are unordered n-tuple (k , ,  . . . , k,,), k, E Rd, n 
arbitrary. We speak of ( k ,  , . . . , k,) as a configuration of particles, although physically 
it represents n phonons with momenta k, ,  . . . , k,. X ,  = 4 means no particle (no 
phonon) is present. The state space is denoted by 

r = U wd. 
*=0 

The jump process X ,  is governed by the following rates. (The present configuration 
( k , ,  . . . , k,) is given.) 
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(i)  Birth: independently of the given configuration a ( n  + 1)th particle is created 
at k + d k  with rate 

( A ( k ) 2 / 4 k ) )  dk. (2.7) 

(ii) Death: independently of all the other particles, the particle at kJ disappears 

4 k J ) .  (2.8) 

By (1.4) and (2.3) the jump process is well defined. Its stationary measure is 12, i.e. 
a Poisson distribution of particles with density ( A / w ) ' .  Since w(k) 2 o o > O ,  H ,  has a 
gap in its spectrum and therefore X, has exponentially fast decaying correlations. The 
path measure of the jump process X ,  starting at X E r is denoted by Px. 

Obviously, on Fock space the operator ;( q - 5 dk ka'( k ) a (  k))' is multiplication by 
;(q-ZJfl=, kJ)* and should be regarded as a potential, V,, with 

with rate 

Vq(kl, . . . ,  k n ) = -  4 - C  k, . x ,:I >' (2.9) 

The potential depends on q as a parameter. If we had kept the bare electron mass, 
then 1 /  m would provide a strength parameter. 

The Feynman-Kac construction tells us that exp[ - TH(  q ) ]  with H (  q )  = H,+ V, 
has the stochastic representation 

(2.10) 

The proof is identical to the one for Schrodinger operators. Since V, 2 0 in our case, 
no problem in the definition of the integral arises. 

Our problem has then the following abstract structure. We have a jump process 
with a unique smooth invariant measure and with exponentially decaying correlations. 
This jump process is perturbed by a decent potential V. The question is whether the 
perturbed process still has the same properties as the unperturbed one. Let us back 
up for a moment and let us assume that Px is a reversible diffusion process. Then 
essentially 

H , =  -;A+ W ( X ) .  (2.11) 

A is the Laplacian and W ( x )  is a potential such that Ho has a unique ground state 
separated by a gap from the rest of the spectrum. We add to Ho a potential V 3  0. Then 

H = ( - f A +  W ) +  V (2.12) 

may lose the ground state because V delocalises. As we will see, for our jump process 
the problem is not too large fluctuations, but rather too little. For a diffusion process 
the Brownian motion is very effective in prohibiting concentration: the Gaussian always 
beats the exponential. For jump processes the waiting time has an exponential distribu- 
tion. Therefore in some parts of state space the process might have to pay too much 
potential energy in order to move away. For the polaron the problem is whether the 
perturbed process still jumps out of the subspace 

U {k, = q ' }  x R ' " - l ' d .  
n 2 ,  
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If not, the particle at q’ stays there forever. This corresponds to the unbinding of a 
free phonon with momentum 9‘. 

We deviate for a while from our subject to study this phenomenon of ‘sticking’ by 
means of a simplified example. 

3. An example 

We truncate the polaron Hamiltonian at n = 1, which yields the so-called (first quan- 
tised) Lee or Friedrichs model, an exactly soluble case. The Hilbert space is %’= CO 
L2(Rd,  dk) .  The free Hamiltonian is 

with ( I U )  the usual scalar product in L2(Rd, dk). We assume w to be constant, w > 0, 
and A 3 0, A > 0 close to k = 0, ( A  I A )  < CO. The unique ground state is 

+bo= ( ( w  -&)’+(A I A ) ) - ” 2 ( ~  -Eo,  A )  (3.2) 

with energy Eo= [ U  - ( w Z + 4 ( A  lA)) ’”2] /2 .  Stochastically a particle is created at k with 
rate A ( k ) * / ( w  -Eo)  and it disappears with rate ( w  -Eo) .  

We perturb now Ho by the potential 

(3.3) 

We assume a 3 0, V( k) 3 0, V continuous, V(0) = 0 and V( k )  > 0 for k # 0. We imagine 
V to be fixed and study the ground state as a function of a. Since 

(,:) (3 
is a one-dimensional perturbation, the explicit form of the resolvent, ( H - z ) - ’ ,  is 
easily obtained. The continuum starts at w. The implicit equation 

a - z = ( A I  v + w - z  4 (3.4) 

determines whether H has a ground state or not. If (Al(l /V)A)=m then (3.4) has 
always a solution z < w. z equals the ground-state energy E. The ground state is 

* = [ (A  1 ( V +  1 - E )  ”)+ ‘I-” (”  V +  w - E A ) .  (3.5) 

If a c a , ,  H has a unique ground state, whereas for a >  a , ,  H has no ground state. 
The precise behaviour at a ,  depends on the ‘second moment’. If ( A l ( l /  V)’A) = CO then 
there is no ground state at a = a , .  If ( A  I (  1/ V)*A) < cc then H has a ground state at 
the edge of the continuum. 

H loses its ground state through a sharper and sharper concentration at k = 0. If 
( A I (  1/ V)*A) = CO, then 

4*+ ( 0 , 6 ( k ) )  (3.6) 

as a + a , .  
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To understand the concentration mechanism through the jump process we transform 
to the backward generator by (2.6). Then, for a < a,, a particle is created at k with 
rate A ( k ) ’ / (  V (  k )  + w - E )  and it disappears with rate ( V (  k )  + w - E ) .  As a + a,, 
w - E  + 0 and the state at k = 0 becomes sticky, i.e. the rate to jump out of it tends to 
zero. For a > a, the transformation (2.6) no longer makes sense. The stationary jump 
process is then to be constructed through the rules of statistical mechanics. We choose 
the time interval [ - T, TI and require that the unperturbed process starts at ( 1 , O )  at 
time -T and ends at ( 1 , O )  at time T The perturbed process is 

1 - po0 exp( - J T  dt  v(x , ) )  = pcT) (3.7) 
Z( T )  -T 

with Z( T )  the ‘partition function’ 

Z ( T ) =  Pooexp - dt  V ( X , )  , I ( I-: ) 
For a < a,, in the limit T + CO, P(T) tends to the stationary jump process with the rates 
already determined. For a > a,, PcT) degenerates in the limit T + CO. The limit process 
is such that one particle sits at k = 0 forever. 

If ( A  I (1/ V)’A) = CO, then the invariant measure of the perturbed process tends 
continuously to (0, S ( k ) )  (‘second-order transition’). If (Al(1/ V)*A)< CO, then the 
invariant measure jumps discontinously to (0, 6(  k ) )  at a, (‘first-order transition’). 

4. Ground-state energy and continuum edge 

A vector in Fock space is denoted by t,b = ( t,bo, . . ). a= (1, 0, . . . ) is the Fock 
vacuum. If unambiguous from the context, A stands also for the vector (0, A, 0 , .  . . ). 
( I a )  denotes the inner product in Fock space, 1 1  $ 1 1  = ( $ 1  t,b)”2. We assume that A > 0, 
i.e. supp A = R d .  Otherwise the allowed k have to be restricted to the set supp A ;  w is 
continuous; A and w are reflection invariant and satisfy (1.4), (1.5) and (1.6). The 
bottom of the spectrum is 

E (  q )  > -CO; E,( q )  denotes the bottom of the continuous part of the spectrum of H( q) .  
From [2], cf also [3], we know the following properties of E ( q ) .  E ( q )  is continuous 

in q and satisfies the bounds 

0 c E ( 4 )  - E ( 0 )  c t q 2 .  

A , ( q ’ ) = E ( q - q ’ ) + w ( q ’ ) - E ( q )  (4.3) 

(4.2) 

Let 

and let 

A, = infA,(q’). 4 (4.4) 

If A, > 0, then H ( q )  has a unique ground state I), E %. The ground state is at least a 
distance A, below E,( q ) .  t,b, is positive (up to an overall phase factor) and (a I I&~ )  > 0. 
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If  ) q )  <ao, then A , > O  because of (4.2). For ) q )  <-, E ( q )  is analytic in q. For 
small q 

with 1 < m* <a, m* being the effective mass of the polaron. 
In fact, we have more precise information about E , ( q ) .  

Proposition. The lower edge of the continuous spectrum of H ( q )  is given by 

E J q )  = E ( q ) + A ,  =inf(E(q - q ’ ) + w ( q ’ ) ) .  (4.6) 

In particular, A ,  2 0. 

Prooj From [2] we know already that 

E , ( q ) Z E ( q ) + A , .  (4.7) 

We choose a trial wavefunction of the form 

5s = x s  0 $/ l lxs0 $ 1 1 .  (4.8) 

with $ E  9, 1 1 $ 1 1 =  1 and 

x 6  E L2(Rd, dk)  xs( k)* dk + S (  k - 4’) d k 

as 6 + 0. 0 denotes symmetrisation. Then by a straightforward computation 

lim(161H(q)56) = ( $ 1  i w ( q ’ )  + H ( q  - q ’ ) )$ )  (4.9) 
s-0 

lim(5slH(q)2~s)=(IC,11w(q’)+H(q - q ‘ ) ) 2 $ ) .  (4.10) 
6-0 

Let E,(dh) be the spectral measure of H ( q )  and let 

QE = E , ( [ E ( q )  + Aq - E ,  E ( q )  + Aq + &I).  

We have to show that dim(Q,)=m for any E > O .  Since E and w are continuous in 
q, these exists a q” such that l A q ( q ” )  -Aql < &/4. We choose q ‘=  q” in (4.9) and (4.10). 
For $ we choose an approximate ground state for H ( q - q ‘ ) .  Furthermore from the 
sequence we can construct a new sequence ln such that (&,, I I&) = S,,  and such that 
(4.9) and (4.10) hold as n + 00. There exists then an N = N ( E )  such that 

(5, 1 ( H ( q ) - E ( q ) - A , ) 2 1 n ) ~ & 2 / 2  (4.11) 

for all n 2 N. Let pn be the spectral measure of ln. Equation (4.11) implies that 

p n ( [ E ( q )  + Aq - e ,  E ( q )  + Aq + & I )  2 5 
and hence (&,I Q E & )  3 f for all n 2 N. dim( Q c )  = CO follows. 

(4.12) 

Our argument does not exclude further bound states in the half-open interval 
[ E  ( q ) ,  E,( q ) ] .  Physically, such bound states are not expected. 
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Repeating the above construction with two phonons, the energy is 

E ( q  - kl - k2) + U (  kl) + U (  k2) = E (  - kl- k2) + W (  kl + k2) 

+(W(kl)+W(k2) -w(k,+ k2)) a E(q)+A,. (4.13) 

A corresponding inequality holds for n phonons. Therefore assumption (1 .5 )  ensures 
that n-phonon excitations do not lie below the one-phonon excitations. 

The condition A, > 0 appears in [2] through a momentum lattice approximation. 
An instructive reinterpretation is obtained from the study of the waiting time of the 
jump process. For this purpose we assume (2.3). Let the process start in the configur- 
ation X = (q ' ,  Y). We want to estimate the probability that the particle at q' stays 
there up to time T. This survival probability is given by 

x x ( { X , = ( q ' ,  Y , ) f o r O ~ t s T } ) .  (4.14) 

Here x denotes the indicator function of the set { a } .  Since the particle at q' stays there 
for OS t G T and, because of the particular structure of V,, we have V , ( X , )  = V,-, ,(  Y,). 
For the free process particles are independent and the survival probability is e-w(q')T. 
Therefore 

(4.14) = [ P ( q . , y )  exp( -loT dt  V , ( X , ) ) ] - '  P y  exp( -loT dt  V,-, .(  Y,))}. 

(4.15) 

For large T the ratio behaves as exp[(E(q-q ' ) -E(q))T] .  Now if A , ( q ' ) > O ,  then 
the survival probability has an exponentially decaying bound and the particle has to 
jump out of q' eventually. A, > 0 means that there are no sticky spots. 

5. Binding 

We try to mimic the simplified example of Q 3. We start in the vacuum, i.e. no particle 
present, and mark the time spans the system stays in the vacuum. The waiting time 
in the vacuum has an exponential distribution. However, in contrast to the simplified 
example studied before, the waiting time in 'no vacuum' has some complicated and 
unknown distribution. Furthermore the particle present at the end of the last vacuum 
period may be at some other position than the particle to be destroyed at the beginning 
of the next vacuum period. Waiting times are still independent. 

Let us first impose condition (2.3) and let us then write 

H ( q )  = H , ( q ) + P  (5 .1 )  
with 

P$= - dkA(k)J,,(k),O,O, . .  . +(O, -$oA(kl),O,. . . ). ( 5 . 2 )  ( J -  1 
P is a (non-normalised) one-dimensional projection. HI( q )  commutes with the projec- 
tion onto the Fock vacuum. On this subspace HI( q )  is multiplication by $q2. We write 

H , ( q ) =  &q)+;q2~0,o.  (5.3) 
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Note that f i ( q )  corresponds again to a perturbed jump process, only IX,I 2 1 (1x1 
denotes the number of particles in the configuration X ) .  In particular, 

E ( q )  inf ( $ 1  f i ( q ) $ ) .  
IL,IIILII = 1 

For z sufficiently negative 
ic 

( H ( q )  - z > - '  = c (HI(!?)  - z ) - ' [ - P ( H , ( q )  - z ) - ' l "  (5.4) 
n = 0  

is a norm convergent sum. Since P is one dimensional, we have 

(5.5) 

Both sides are analytic for z < E ( q ) .  Equation (5.5) holds then for all z < E ( q ) .  
Now 

( f i ( q )  - z ) - '  = lom dt ezr e-'(q)'. 

The kernel of on one-particle space is denoted by (e- 'f i(q))l l(k,  k'). It has two 
contributions: (i) the particle at k sits there up to time t ;  (ii) the particle at k disappears 
before time t. Therefore 

(e-rf i (q)) l l (  k, k') = 6( k - k')hk( t )  + R,( k, k'). (5.6) 
Note that R,( k, k') 2 0 by construction. To determine h k (  1 )  we use the same method 
as in (4.15). By definition, for 0 4  s 4 t, the configuration is of the form X ,  = (k, Ys) .  
Hence V q ( X s )  = v q - k (  Y,). Since, in the free process, particles are independent, the 
Y, process is identical to the X ,  process with no restriction on lX,l. Therefore 

hk(t) = e - w ( k ) r ( n n / e - r H l q - k ) ~ ~  (5.7) 

( A  I ( f i ( q )  - z ) - ' A )  = I,' d t  eZr (I dkA(k)2hk( t ) +  I dk dk' A(k)A(k')R,(k, k') . ) 
(5.8) 

Omitting the positive contribution from R, yields 

('1 H ( q ) - z n ) z ( t q 2 - z - {  1 d k A ( k ) 2 ( n  I H ( q - k ) + w ( k ) - z  1 *))-'. (5.9) 

Suppose that 

(5.10) 

admits a solution z < E,( 4 ) .  Then, as z increases from -00, (Q I H( q )  - z ) - ' Q )  has to 
diverge below the continuum edge. Therefore Aq > 0 and H ( q )  has a unique ground 
state. Clearly E ( q ) s z .  Note that the left-hand side of (5.10) increases in z. If (5.10) 
admits a solution at all, it has to be unique. 

dk A (k)' = CO, but still J dk A (k) ' ( l+  k2)-' < 00, then H( q )  is self-adjoint 
(although with a domain differing from the one of H,) and bounded from below [2]. 
We choose a large k cutoff A 6  such that 1 dk A,( k)'< 00 and denote the corresponding 
Hamiltonian by H , ( q ) .  Then for z < E (  q )  

(5.11) 

If 

lim( H~ ( 4 )  - z ) - '  = ( H ( 9 )  - z ) - '  
6-0 
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in the strong operator norm [2]. In particular, lims,,(R I ( H , ( q )  - z)-’fl) = 
(a I ( H ( q )  - z)-’fl). Since (5.9) holds for any 8, it remains true in the limit 8 + 0. 

We summarise our main result. 

Theorem. Let w (k )  2 w, > 0, w ( k , )  + w ( k , )  - w (k,  + k2) 2 0, w continuous. Let 
J’dkA (k),( 1 + k2) - ’  <CO and let A and w be reflection invariant. Let z be the solution 
of 

(Here we have reintroduced the coupling constant a.) If 

z < inf(E(q - 4’) + w ( q ‘ ) )  
9’ 

(5.13) 

then H ( q )  has a unique ground state +hq. +h9 is positive (up to an overall phase factor) 
and (Cl (a,) > 0. Furthermore E (  q )  s z. In a sufficiently small neighbourhood of (4, a), 
E is jointly analytic in both variables. 

Because I lk2  is not integrable near zero in dimensions d = 1,2,  we conclude that 
for d = 1 , 2  the polaron always has a unique ground state. 

Corollary. Let w be twice continuously differentiable. Let 

W (  k,) + W (  k,) - U (  k ,  + k,) 3 c > 0 

and let there exist a ko such that 

E (  q - k,) + w (  k,) = inf( E (  q - k)  + w (  k)). (5.14) 

Then for dimensions d = 1 ,2 ,  H ( q )  has a unique ground state. (Equation (5.12) has 
a solution z < E,( q ) . )  

Proof: By assumption there is a k, at which the function k-, E ( q  - k)  + w(k) takes its 
minimum. Therefore E (  q - k,) + w (  k,) s E (  q - k’) + w (  k ’ )  for any k’. We choose 
k’ = k, + 4’. Then 

k 

0 < c s w (ko)  + U (  q’) - o (ko  + q’ )  S E (4  - ko - 4‘) + W (  q’ )  - E (9 - ko). (5.15) 

Hence 0 and H ( q  - k,) has a unique ground state. By continuity this still holds 
in a ball of radius E around q - k, with E sufficiently small. 

If in (5.12) the right-hand side is replaced by some lower bound, all assertions 
remain true. Let p9 (dy)  be the spectral measure of H ( q )  with vector fl. Then the 
right-hand side of (5.12) equals 

r 

dkh(k),(fl l  +h9_k)*(E(q - k ) +  U (  k )  - z)-’. (5.16) 

Close to k = k,, E ( q  - k) is analytic and w is twice differentiable. Therefore, by (5.14) 
and (4.6) 

(5.17) 
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with a 2 0 as a matrix. Since A (  k )  > 0 and (R I $ q - k )  > 0 close to k o ,  the right-hand 
side of (5.16) diverges as z +  E c ( q ) .  Therefore the equation i q 2 - z  = (right-hand side 
of (5.16)) has a solution z with z < E , ( q ) .  

We have too little a priori knowledge about E ( q )  to verify (5.14) for general 0. If w 
takes its maximum 'at infinity', then E ( O ) + w ( q ) s  E(co)+w(co) ,  since E ( 0 )  S E ( q ' )  
for any 4'. By continuity the infinum of E ( q  - e )  - U (  a )  has to be taken at some finite 
value and (5.14) holds. To improve our condition we use (1.10): for l k l < G  the 
dispersion relation is arbitrary and for Ikl> &, w takes its maximum 'at infinity'. 
In particular, if w ( k )  = w o ,  then (5.14) holds with k o =  q. 

For dimensions d 5 3, l / k 2  is integrable near zero and in general the lower bound 
(5.9) does not diverge as z 3 E , ( q ) - .  Let us discuss the particular case w ( k )  = w,,, A 
rotation invariant, d = 3, Then using the lower bound as in (5.16) yields 

; q 2 - z = a  J (5.18) 

Forsmall k, E ( k ) -  E ( 0 )  = k2/2m*. Ifstillagoodapproximationfortheball \ k \ S 6 0 ,  
we can ensure a unique ground state whenever 141 < qc with 

d3kA(k)2(R I $ k ) ' ( ( E ( k )  - E(O) )+  E ( 0 )  + W O -  z)-'. 
{Ikl-Jso) 

(5.19) 

For large coupling E ( 0 )  = -a ( =  - a 2  for the Frohlich polaron) and m*(a)  = a' (=a4 
for the Frohlich polaron). Therefore the right-hand side dominates and qc=  
constant x di'P for large a. 

The lower bound (5.9) has the physically expected dependence on the coupling 
constant. Suppose that we have verified that the lower bound diverges at z < E,(q) 
for some ao. Then the same property holds for all a > ao.  The reason is that 
(RI ( H ( q  - k )  + w (  k )  - z)-'R) is increasing in a and so is the right-hand side of (5.12). 
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Appendix. The polaron functional integral at purely imaginary external field 

We want to represent (0 I e-rH'4'R) through the standard polaron functional integral. 
The Hamiltonian H of (1.1) lives on %= L2(Rd,  d x ) O  9. A vector in % is decomposed 
according to the total momentum as 5 = dq g( q)t,bq. Then 
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since 1 dk k a ' ( k ) a ( k ) f l  = 0. Therefore, inverting the Fourier transform, 

(n I e-rH'q'fl) = d& ei5q((s(x)C3n I e-THG(x - 5) @Cl).  

By the Feynman-Kac formula, integrating out the bosons, we find 

(fl le-rH(9'n)= Po(dx( * )) 

(A31 

I 
x exp ( $Y IoT dt  Ior ds W (  t - s, x(  t )  - x(s))  (A4) 

Here Po is the Brownian motion starting at the origin and 

W(t ,  x )  = dkA(k)2e-"'k'"' cos kx. (A5) 

Let us substitute iq by q. Then POexp(qx(T)-iq2T) is the path measure of 
Brownian motion with a constant drift q. We define the free energy per unit length, 
as a function of the drift a. bv 

I 
- 

f (q)  = -1im Llog r-x T 
(A61 

Then f( q)  analytically continued to the purely imaginary axis equals the ground-state 
energy E(q) .  This observation could be useful numerically. For a strip around the 
real axis f is analytic. In general, it is difficult to show from (A6) that f is analytic in 
the entire complex q plane (and presumably not true for d 2 3) .  

To push the analogy with the external field a little bit further we go over to the 
increments, (d/dt)q( t )  = U( t ) .  Then (A4) becomes 

P is white noise. Discretising the integral (A7) we obtain a one-dimensional d -  
component 'spin' system with a many-body interaction and a purely imaginary external 
field. 

Also other matrix elements can be represented through the functional integral. 
Particularly convenient are the coherent state matrix elements 

( w(f)n 1 e-TH(q) w(f)n) 
where 

w(f) = exp( I dk(f (k)a(k)  - ~ ( k ) o + ( k ) ) )  

is the Weyl operator. 
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